No net insect abundance and diversity declines across US Long Term Ecological Research sites (2024)

References

  1. Price, P. W., Denno, R. F., Eubanks, M. D., Finke, D. L. & Kaplan, I. Insect Ecology: Behavior, Populations and Communities (Cambridge Univ. Press, 2011).

  2. Watanabe, M. E. Pollination worries rise as honey bees decline. Science 265, 1170–1170 (1994).

    Article CAS PubMed Google Scholar

  3. Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    Article CAS PubMed Google Scholar

  4. Mathiasson, M. E. & Rehan, S. M. Status changes in the wild bees of north-eastern North America over 125 years revealed through museum specimens. Insect Conserv. Divers. 12, 278–288 (2019).

    Google Scholar

  5. Powney, G. D. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).

    Article PubMed PubMed Central CAS Google Scholar

  6. Fox, R. The decline of moths in Great Britain: a review of possible causes. Insect Conserv. Divers. 6, 5–19 (2013).

    Article Google Scholar

  7. Casey, L. M., Rebelo, H., Rotheray, E. & Goulson, D. Evidence for habitat and climatic specializations driving the long-term distribution trends of UK and Irish bumblebees. Divers. Distrib. 21, 864–875 (2015).

    Article Google Scholar

  8. Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article PubMed PubMed Central CAS Google Scholar

  9. Leather, S. R. “Ecological armageddon”–more evidence for the drastic decline in insect numbers. Ann. Appl. Biol. 172, 1–3 (2018).

    Article Google Scholar

  10. Habel, J. C., Samways, M. J. & Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 28, 1343–1360 (2019).

    Article Google Scholar

  11. Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Article Google Scholar

  12. Seibold, S. et al. Arthropod decline in grasslands and forests is associated with drivers at landscape level. Nature 574, 671–674 (2019).

    Article CAS PubMed Google Scholar

  13. Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  14. Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    Article CAS PubMed Google Scholar

  15. Wesner, J. S. et al. Loss of potential aquatic–terrestrial subsidies along the Missouri River floodplain. Ecosystems 23, 111–123 (2020).

    Article Google Scholar

  16. Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE 14, e0216270 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  17. Welti, E. A. R., Roeder, K. A., de Beurs, K. M., Joern, A. & Kaspari, M. Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proc. Natl Acad. Sci. USA 117, 7271–7275 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  18. Montgomery, G. A. et al. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241, 108327 (2020).

    Article Google Scholar

  19. Saunders, M. E., Janes, J. K. & O’Hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. Bioscience 70, 80–89 (2020).

    Article Google Scholar

  20. Thomas, C. D., Jones, T. H. & Hartley, S. E. “Insectageddon”: a call for more robust data and rigorous analyses. Glob. Change Biol. 25, 1891–1892 (2019).

    Article Google Scholar

  21. Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4, 384–392 (2020).

    Article PubMed Google Scholar

  22. Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 3, 1645–1649 (2019).

    Article PubMed Google Scholar

  23. Gonzalez, A. et al. Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).

    Article PubMed Google Scholar

  24. Vellend, M. et al. Estimates of local biodiversity change over time stand up to scrutiny. Ecology 98, 583–590 (2016).

    Article Google Scholar

  25. van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    Article CAS PubMed Google Scholar

  26. Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Phil. Trans. R. Soc. A 369, 1010–1035 (2011).

    Article PubMed Google Scholar

  27. Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    Article CAS Google Scholar

  28. Kanakidou, M. et al. Past, present, and future atmospheric nitrogen deposition. J. Atmos. Sci. 73, 2039–2047 (2016).

    Article CAS PubMed PubMed Central Google Scholar

  29. Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).

    Article PubMed Google Scholar

  30. Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).

    Article CAS PubMed Google Scholar

  31. Finke, D. L. & Snyder, W. E. Niche partitioning increases resource exploitation by diverse communities. Science 321, 1488–1490 (2008).

    Article CAS PubMed Google Scholar

  32. Crowder, D. W., Northfield, T. D., Strand, M. R. & Snyder, W. E. Organic agriculture promotes evenness and natural pest control. Nature 466, 109–112 (2010).

    Article CAS PubMed Google Scholar

  33. Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).

    Article Google Scholar

  34. Sikes, D. S. & Raithel, C. J. A review of hypotheses of decline of the endangered American burying beetle (Silphidae: Nicrophorus americanus Olivier). J. Insect Conserv. 6, 103–113 (2002).

    Article Google Scholar

  35. Harmon, J. P., Stephens, E. & Losey, J. The decline of native coccinellids (Coleoptera: Coccinellidae) in the United States and Canada. J. Insect Conserv. 11, 85–94 (2007).

    Article Google Scholar

  36. Agrawal, A. A. & Inamine, H. Mechanisms behind the monarch’s decline. Science 360, 1294–1296 (2018).

    Article CAS PubMed Google Scholar

  37. Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 340, 1608–1611 (2013).

    Article CAS Google Scholar

  38. Samson, F. & Knopf, F. Prairie conservation in North America. Bioscience 44, 418–421 (1994).

    Article Google Scholar

  39. Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).

    Article PubMed Google Scholar

  40. Ives, A. R., Einarsson, Á., Jansen, V. A. A. & Gardarsson, A. High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. Nature 452, 84–87 (2008).

    Article CAS PubMed Google Scholar

  41. Spatiotemporal Design (NEON, National Science Foundation – National Ecological Observatory Network, 2019); https://www.neonscience.org/about/about/spatiotemporal-design

  42. North American Butterfly Count Circles (NABA, North American Butterfly Association, 2019); https://www.naba.org/butter_counts.html

  43. Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 340, 1611–1615 (2013).

    Article CAS Google Scholar

  44. Harvey, J. A. et al. International scientists formulate a roadmap for insect conservation and recovery. Nat. Ecol. Evol. 4, 174–176 (2020).

    Article PubMed Google Scholar

  45. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article CAS PubMed Google Scholar

  46. Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

    Article CAS PubMed PubMed Central Google Scholar

  47. Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    Article CAS PubMed Google Scholar

  48. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article CAS PubMed Google Scholar

  49. Lagos-Kutz, D. et al. The soybean aphid suction trap network: sampling the aerobiological “soup”. Am. Entomol. 66, 48–55 (2020).

    Article Google Scholar

  50. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

  51. De Graaf, R. M., Tilghman, N. G. & Anderson, S. H. Foraging guilds of North American birds. Environ. Manag. 9, 493–536 (1985).

    Article Google Scholar

  52. Ives, A. R., Abbott, K. C. & Ziebarth, N. L. Analysis of ecological time series with ARMA(p, q) models. Ecology 91, 858–871 (2010).

    Article PubMed Google Scholar

  53. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article Google Scholar

  54. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article Google Scholar

  55. Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    Article PubMed PubMed Central Google Scholar

  56. Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    Article CAS PubMed Google Scholar

  57. Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).

    Article PubMed Google Scholar

  58. Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-4 (2019).

  59. Jaccard, P. The distribution of the flora in the alpine zone. N. Phytol. 11, 37–50 (1912).

    Article Google Scholar

  60. Harrison, S., Ross, S. J. & Lawton, J. H. Beta diversity on geographic gradients in Britain. J. Anim. Ecol. 61, 151–158 (1992).

    Article Google Scholar

  61. Barwell, L. J., Isaac, N. J. B. & Kunin, W. E. Measuring β-diversity with species abundance data. J. Anim. Ecol. 84, 1112–1122 (2015).

    Article PubMed PubMed Central Google Scholar

  62. Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).

    Article Google Scholar

Download references

No net insect abundance and diversity declines across US Long Term Ecological Research sites (2024)
Top Articles
Latest Posts
Article information

Author: Velia Krajcik

Last Updated:

Views: 6372

Rating: 4.3 / 5 (54 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Velia Krajcik

Birthday: 1996-07-27

Address: 520 Balistreri Mount, South Armand, OR 60528

Phone: +466880739437

Job: Future Retail Associate

Hobby: Polo, Scouting, Worldbuilding, Cosplaying, Photography, Rowing, Nordic skating

Introduction: My name is Velia Krajcik, I am a handsome, clean, lucky, gleaming, magnificent, proud, glorious person who loves writing and wants to share my knowledge and understanding with you.